
Release Notes for Microchip Memory Disk Drive File
System
Version 1.1.2

June 25, 2008

1. Description

This library is intended to provide an interface to file systems compatible with ISO/IEC

specification 9293 (commonly referred to as FAT12 and FAT16). This library includes

four different physical interface files: one for SecureDigital card interface using the SPI

module, one for CompactFlash card interface using manual bit toggling, one for

CompactFlash card interface using the Parallel Master Port module included on several

PIC24/PIC32 microcontrollers, and one template interface file that can be modified by

the user to create a custom interface layer to an unsupported device..

2. Changes In This Release

From version 1.1.1

a. Fixed a bug that prevented the allocation of new clusters to the root directory in

FAT32 implementations.

b. Fixed a bug that prevented writing more than one cluster’s worth of file entries to the

root directory in FAT16/FAT12 implementations.

c. Fixed a bug that returned an incorrect date for directory entries located in the first

directory entry after a cluster boundary of a FAT32 root directory.

d. Fixed a bug with FSrename that would cause the function to improperly fail if the

directory entries in the current working directory (or previous directory, when

renaming the CWD) completely filled a cluster (and no data clusters were allocated to

the directory after that).

From version 1.1.0

a. Fixed a bug with the PIC24 clock divider that was causing the interface to run more

slowly than intended.

b. Added support for PIC32 microcontrollers.

From version 1.01

a. Added support for FAT32. To enable this functionality, make sure the

SUPPORT_FAT32 macro is uncommented in FSconfig.h.

b. Added functions to provide support for the USB Mass Storage Host code.

c. Moved pin and hardware definitions from physical interface files to

HardwareProfiles.h.

d. Created function pointers for functions that vary between interface files. These are

located in FSconfig.h.

e. Moved macros to select the correct physical layer to HardwareProfiles.h.

f. Modified the SD-SPI physical layer to ensure that communication speed during

startup falls between 100 kHz and 400 kHz

g. Created a new example project: MDD File System-PIC24-SD Data Logger. This

project contains code for a shell-style program based on the USB Thumb-drive shell

demonstrated in Application Note 1145.

h. Decreased the delay in the SD-SPI media initialization from 100 ms to 1 ms.

i. Added the ability to change directories when writes are disabled.

From version 1.0

a. FindFirst and FindNext will now return the create time/data in the timestamp field of a

SearchRec object when they return values for a directory.

b. Corrects a bug in the FindEmptyCluster function when searching for files beyond the

end of a storage device.

c. Automatically aligns buffers for 16-bit architectures.

d. For the SPI interface, prescaler divides will now be determined dynamically based on

the system clock speed defined in FSconfig.h.

e. The DiskMount, LoadMBR, LoadBootSector, and FSFormat functions, as well as the

gDiskData, gFATBuffer, and gDataBuffer structures are now located in FSIO.c instead of

in the interface files.

f. The SectorRead function will now do a dummy read of the sector and discard the data

if it is called with NULL as the data pointer.

g. Replaced the device initialization code in the FSFormat function with calls to InitIO

and MediaInitialize.

h. The MediaDetect function is not de-bounced. In order to determine that a device is

available, you must call MediaDetect, wait for an appropriate amount of time, and then

call it again.

i. The sample linker script in the MDD File System-PIC18-CF-DynMem-UserDefClock

project has been modified. Previously, several databanks were merged together; this

caused an issue accessing variables that spanned multiple data banks. C18 only allows

users to access variables like these using pointers.

j. Added a new user function. The FSrename function will allow the user to rename files

and directories. A version that accepts a ROM filename is available for PIC18

(FSrenamepgm). The API is:

Function: int FSrename (const char *fileName, FSFILE * fo)
PreCondition: None
Input: fileName - The new name of the file
 fo - The file to rename
Output: int - Returns 0 if success, -1 otherwise
Side Effects: None
Overview: Change the name of a file or directory
Note: This function will change the name of the current
 working directory if ‘fo’ equals NULL.

3. Known Issues

a. This implementation does not support long file names. When using the FSremove or

FSremovepgm functions on a file with long file names, the file’s FAT entries and short

name directory entry will be deleted successfully, but any long file name entries will not

be removed.

4. Compiler Version Used

This library was compiled using MPLAB C18 v.3.20, MPLAB C30 v.3.10, and MPLAB

C32 v1.0 C compliers.

5. Memory Size

Unoptimized memory usage for the file interface library using the SD-SPI physical layer

is given in Table 1. 512 bytes of data memory are used for the data buffer, and an

additional 512 are used for the file allocation table buffer. Additional data memory will

be needed based on the number of files opened by the user at once. The default data

memory values provided include space for three files opened in static allocation mode.

The C18 data memory value includes a 512 byte stack. The first row of the table indicates

the smallest amount of memory that the library will use (for read-only mode), and each

subsequent row indicates the increase in memory caused by enabling other functionality.

Optimized and unoptimized totals for program and data memory with all functions

enabled are listed after the table. This data was compiled while allowing two file objects

to be opened simultaneously.

Table 1: Memory Usage (Unoptimized)

Functions
Included

Program
Memory

(C18)

Data
Memory

(C18)

Program
Memory

(C30)

Data
Memory

(C30)

Program

Memory

(C32)

Data

Memory

(C32)

All extra

functions

disabled (read

only mode)

24701

bytes

1872 bytes 12714 bytes 1324 bytes 22708

bytes

3056

bytes

Read only mode

with directory

support

+7390

bytes

+75 bytes +3651 bytes +78 bytes +4748

bytes

+88

bytes

File Search

enabled

+3728

bytes

+0 bytes +1638 bytes +0 bytes +2288

bytes

+0 bytes

Write enabled +16086

bytes

+0 bytes +8307 bytes +0 bytes +4844

bytes

+0 bytes

Format enabled

(Write must be

enabled)

+4778

bytes

+0 bytes +2571 bytes +0 bytes +3624

bytes

+0 bytes

Directories

enabled (With

writes enabled)

+17001

bytes

+90 bytes +8694 bytes +78 bytes +11560

bytes

+88

bytes

FSfprintf

enabled

+17153

bytes

+58 bytes +4731 bytes +0 bytes +8412

bytes

+0 bytes

Functions
Included

Program
Memory

(C18)

Data
Memory

(C18)

Program
Memory

(C30)

Data
Memory

(C30)

Program

Memory

(C32)

Data

Memory

(C32)

File Search and

Directories

enabled

+236 bytes +0 bytes +51 bytes +0 bytes +7100

bytes

+0 bytes

Pgm functions

enabled

+2394

bytes

+0 bytes N/A N/A N/A N/A

Total memory usage*

C18:

Unoptimized Program memory- 68924 bytes

Unoptimized Data memory- 1962 bytes

Optimized Program memory- 36660 bytes

Optimized Data Memory- 1962 bytes

C30:

Unoptimized Program memory- 38703 bytes

Unoptimized Data memory- 1402 bytes

 Optimized Program memory- 23409 bytes

 Optimized Data memory- 1402 bytes

C32:

 Unoptimized Program memory- 59552 bytes

 Unoptimized Data memory- 3146 bytes

 Optimized Program memory- 36604 bytes

 Optimized Data memory- 3146 bytes

*Note: C18 total memory usage does not include FSfprintf functionality. Since FSfprintf

requires integer promotion to be enabled, using it greatly increases the code size of all

functions.

6. More Information

More detailed information about the operation of this library is available in Application

Note 1045, available from www.microchip.com.

